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Noncircular converging flows in viscous gravity currents
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We study the filling of a dry region~cavity! within a viscous liquid layer on a horizontal plane. In our
experiments the cavities are created by removable dams of various shapes surrounded by a silicon oil, and we
measure the evolution of the cavity’s boundaries after removal of the dams. Experimental runs with circular,
equilateral triangular, and square dams result in circular collapse of the cavities. However, dams whose shapes
lack these discrete rotational symmetries, for example, ellipses, rectangles, or isosceles triangles, do not lead to
circular collapses. Instead, we find that near collapse the cavities have elongated oval shapes. The axes of these
ovals shrink according to different power laws, so that while the cavity collapses to a point, the aspect ratio is
increasing. The experimental setup is modeled within the lubrication approximation. As long as capillarity is
negligible, the evolution of the fluid height is governed by a nonlinear diffusion equation. Numerical simula-
tions of the experiments in this approximation show good agreement up to the time where the cavity is so small
that surface tension can no longer be ignored. Nevertheless, the noncircular shape of the collapsing cavity
cannot be due to surface tension which would tend to round the contours. These results are supplemented by
numerical simulations of the evolution of contours which are initially circles distorted by small sinusoidal
perturbations with wave numbersk>2. These nonlinear stability calculations show that the circle is unstable in
the presence of the modek52 and stable in its absence. The same conclusion is obtained from the linearized
stability analysis of the front for the known self-similar solution for a circular cavity.
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I. INTRODUCTION

This work concerns convergent viscous gravity curren
which occur when a viscous layer on a horizontal surfa
fills an initially dry region~cavity!. As time progresses, th
fluid spreads into this region and at some timetc ~closure or
focusing time!, the fluid fills the cavity. An important featur
of these currents is that the flow is primarily horizontal and
governed by a balance between gravity and viscous for
inertia effects being negligible. This problem with radi
symmetry~circular cavity! has received attention in rece
years@1–7#. It is known that for timet less than but close to
tc and sufficiently small distancesr from the center of sym-
metry, the fluid heighth(r ,t) is described by a self-simila
function @5,6#. Self-similar behavior also occurs fort*tc in
the neighborhood ofr 50.

Recently@8#, it has been shown that there can be lo
self-similar behavior which is not axially symmetric in th
post-focusing stage. However, no description of the non
ally symmetric closure process is known. Qualitatively,
seems reasonable to guess that near the closure the s
should behave in a simple general way, largely independ
PRE 581063-651X/98/58~5!/6182~6!/$15.00
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of the initial and far-field conditions. In addition, the cavi
contour should advance faster where the inward curvatur
larger, since¹h is larger there. Both guesses are experim
tally confirmed here, but the results show that they do
imply that the contour always tends asymptotically to a cir
or any self-similar form.

We approach the problem in several steps. First, we p
form experiments with a silicon oil on a glass surface a
create the cavity by means of dams of various shapes.
prisingly, we find that some special shapes of the dams
not result in circular collapsing flows~see below!, but in
collapsing contours shaped as elongated ovals. We also c
pare the measurements with the results of a numerical c
which gives the time evolution of the flow, assuming th
surface tension effects~inevitably present in the experi
ments! are negligible. The comparison shows that surfa
tension affects the evolution of the contours mainly in t
regions where their inwards curvature becomes of the o
of the capillary lengtha. However, surface tension effec
cannot be responsible for the appearance of noncircular
lapsing flows since, on the contrary, the tendency of capill
forces is to round the contours.
6182 © 1998 The American Physical Society
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The experiments and numerical simulations suggest
circular contours are not attracting. Consequently, we p
form a series of numerical simulations to test the nonlin
stability of circular contours. In particular, we simulated t
experimental setup, but now with dams of circular sha
perturbed by sinusoidal modes having various azimu
mode numbersk. The main result is that the collapsing co
tours become elongated only when the modek52 is present.
Finally, we investigate the linear stability of the level sets
the known axially symmetric self-similar focusing solutio
the so-called Graveleau solution@1#. These solutions de
scribe to leading order the collapse of a circular cavity@5,6#.
Our analysis shows that the circular interfaces of the Gr
eleau solutions are unstable to perturbations with wave n
bers k<2, and stable to perturbations with wave numb
k>3. Thus, in particular at the level of linear analysis, elo
gation (k52) induces instability. This is in agreement wi
the experimental observation, the numerical simulations,
the numerical nonlinear perturbation analysis cited above

II. EXPERIMENTS AND NUMERICAL SIMULATIONS

In the experiments the flow is produced in a flat glass t
(72394310 cm3). The horizontality of the bottom plate i
optically controlled up to 0.01 cm. A layer~thicknessh0
>0.5 cm! of polydimethylsiloxane~PDMS,n5101.6 cm2/s,
r50.973 g/cm3, g521 dyn/cm atT520 °C! initially sur-
rounds a central dry region~the cavity! bounded by a dam
which is raised att50. A video camera records from belo
the evolution of the dry region contour and data are obtai
by digitalizing a set of selected frames~the resolution attain-
able with the maximum zoom is about 0.01 cm!.

We employ dams shaped as circles, squares, equila
triangles, and the figures that result from the elongation
these regular contours along a symmetry axis, i.e., ellip
rectangles and rhombs, and isosceles triangles. The are
the initial dry region~'100 cm2! is a small fraction of the
total tray area. Experiments with elongated dams were
peated for different orientations of the major axis with r
spect to the tray walls. These changes never produced ap
ciable effects. The experimental results are w
reproducible; the main sources of dispersion are the p
size and, in the initial stage, the formation of bubbles a
other perturbations associated with the removal of the da

The experiments with circular dams confirm with im
proved accuracy the results reported in Ref.@4#. Therefore, in
this short overview we pass directly to experiments with
liptical dams. In Fig. 1, we show a temporal sequence
contours for a case with initial radiir max(0)510 cm and
r min(0)55 cm. A noteworthy point is that the contours a
close but not equal to ellipses. In Fig. 2, we plotr max(t) and
r min(t) ~the lines correspond to numerical simulations; s
below!. It is seen that the cavity becomes more and m
elongated@i.e., the aspect ratioA(t)5r max/rmin increases as
the size decreases# until finally it resembles a rapidly short
ening narrow oval~the width falls below the resolution while
the length is still of the order of a millimeter!. Note that this
occurs despite the fact that the contour velocity is large
the regions of larger curvatures as expected~near the
apexes!. This is also shown by the curve corresponding
this case in Fig. 3, where we reportDr (t)5r max2rmin both
at
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from experiments and simulations.
Before discussing the results with the other dam shape

is convenient to consider the mathematical modeling of
flow. It is well known @2,9,10# that when the free surfac
slopes are small, the lubrication approximation holds a
consequently a nonlinear diffusion equation of the form@11#

]h

]t
5

rg

3m
“•~h3

“h! ~1!

describes the height profileh(x,y,t), wherem is the viscos-
ity, r the density, andg the gravity. The effects of surfac
tension have not been included, because they do not ap

FIG. 1. Temporal sequence of experimental contour shapes
an elliptical dam@r max(0)510 cm, r min(0)55 cm# at t529.5, 104.3,
157.0, 171.6, 176.5, and 182 s. The height of the fluid layer ish0

50.52 cm and the closure occurs attc5182.3 s.

FIG. 2. Major (r max) and minor (r min) radius of the collapsing
cavity of Fig. 1 as a function oftc2t. The radii and the time are in
units of r min(0) and t053mr min(0)2/rgh0

3 ~554.4 s!, respectively.
The symbols represent the experimental data and the lines c
spond to the numerical simulations@13# with different values of
Dxmin5Dymin also in units ofr min(0).
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ciably affect the global flow dynamics provided the size
the region is much larger than the capillary lengtha
5Ag/rg>0.15 cm~see, for instance, Ref.@12#!.

In addition, we have developed a numerical code to so
Eq. ~1! in Cartesian coordinates inside a rectangular dom
@13#. It is implemented in finite differences and employs t
alternating-direction implicit method~see, for example, Ref
@14#!. The code uses a nonuniform grid and was validated
comparison with both the circular diverging@15,16# ~drop
spreading! and circular converging@1,4,7# ~filling of a cav-
ity! solutions. Some special diverging noncircular solutio
@17# were also accurately calculated. To achieve a high re
lution of the contour near the closure, the simulations w
carried out in a grid of 2003200 points with the smalles
cells located at the center@Dxmin5Dymin50.002 in units of
r min(0)#. The calculations were performed on a workstati
~Silicon Graphics Indy! and each run took about two hour
For a particular case~initial elliptic contour of aspect ratio
2!, we performed a more accurate simulation~5513551 grid
points! which took about 15 days.

Figure 2 shows a good agreement between the experim
tal and numerical values ofr min , and its asymptotic evolution
is closely approximated by a power law with an expon
very close to unity. The behavior ofr max suggests a power
law dependence with an exponent considerably lower t
unity ~'0.5!. An accurate determination of that expone
would require a much more extensive numerical simulati
mainly because the curvature radius at the apexes beco
very small near the closure, thus reducing the precision
the numerical simulation there. The results with three diff
ent grids are shown in Fig. 2. Note that there is a strong
progressive departure between experimental and nume
values ofr max. This is interpretable as an effect of surfa
tension, which becomes important when the radius of cur

FIG. 3. Absolute departure from circularityDr 5r max2rmin as a
function of tc2t in units of r min(0) andt0 , respectively, as in Fig.
2. The symbols represent the experimental data and the lines c
spond to the numerical simulation@13#.
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ture R at the apexes is of the order of the capillary lengtha.
In fact, by assuming an elliptical contour, we may estim
R>r min

2 /rmax. R is close to 0.15 cm forr max'3 cm and
r min'0.75 cm, the range where the departure becomes
preciable. Physically, we expect that surface tension tend
smooth the curvature distribution, thus keeping the asp
ratio below the numerical values and preventing its u
bounded increase near the collapse.

The experiments with squares and equilateral triang
lead to circular closures which in the last stage do not dif
from those originating from circular dams. The disparity b
tween the experimental and numerical values ofr max(t) and
r min(t) are much less than in the above elliptical case. Thi
reasonable since the curvature tends to a uniform distribu
regardless of capillary effects. Instead, rhombic and rec
gular dams, as well as dams shaped as isosceles trian
lead to noncircular closures, reminiscent of those originat
from elliptical dams. Therefore, we center our interest on
time evolution ofDr (t)5r max2rmin . In Fig. 3, we report
Dr (t) for a square dam~side 10 cm!, an equilateral triangle
dam~side 12 cm!, a rectangular dam (20310 cm2), and the
elliptical dam of Fig. 2. In the rectangular and elliptic
cases, the decrease ofDr (t) is far slower than in the cases o
regular shapes. This difference has the significant con
quence shown in Fig. 4. The relative departure from cir
larity, defined as

F5
Dr

r av
5

r max2r min

~r max1r min!/2
, ~2!

decreases for the dams of regular shapes and increase
the dams with elongated shapes.

In summary, the results strongly indicate that an elo

re-

FIG. 4. Relative amplitudeF as a function oftc2t in units of t0

~see caption of Fig. 2!. The symbols represent the experimental d
and the lines correspond to the numerical simulation@13#.
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gated contour does not evolve to a circular shape. Spe
cally, both r min and r max tend to zero simultaneously att
5tc following different power laws ont2tc . Consequently,
the departure from circularityF increases as the cavit
closes. The results cannot be attributed either to experime
or to numerical effects not contained in the lubrication a
proximation on the basis of Eq.~1!. Regarding the experi
mental results, the effects of surface tension are the crit
issue, since the front positions are determined with high
curacy~,0.1 mm! and the effects related to lacks of plana
ity or horizontality of the tray have been shown to be neg
gible. However, surface tension cannot be responsible for
increase ofF, since, on the contrary, it tends to reduceF. In
fact, Fig. 4 shows that the experimental data are a little
low the numerics for the ellipse and the rectangle. The r
ability of the numerics is shown in Fig. 2 since the results
three different grid sizes are practically coincident. As a c
sequence, the behavior of the noncircular collapses is
determined by the experiments and the numerics. Perhap
most significant uncertainty regards the value of the ex
nent for the time dependence ofr max, which certainly is
much less than unity and appears to be close to 0.5.

III. STABILITY OF PERTURBED CIRCULAR CONTOURS

In order to provide an interpretative scheme to these
sults, we perform numerical simulations starting with a d
torted circular contour given by

r 511d cos~ku!, d50.1, k52,3,4,5 ~3!

with r and u the polar coordinates. As shown in Fig. 5,F
increases forr av→0 only for k52, so that only in this case
does the contour tend to elongated ovals, otherwise it te

FIG. 5. Relative amplitudeF as a function ofr av in units of
r min(0) for small perturbations of a circle with different modesk
52, 3, 4, and 5.
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to circles. For much smallerd ~&0.01! andk52, the aspect
ratio A(t) remains almost constant and equal toA(0)>1
during most of the collapse, as should be expected bec
the amplitude of the distortion actually decreases. Only v
near the closure (r av'd) doesA(t) increase rapidly and un
boundedly. In the experiments with initial regular contou
some smallk52 distortions cannot be ruled out as a cons
quence of the removal of the dam; nevertheless, we ob
circular closures. This is because small distortions are o
come by capillarity before their effects on the aspect ra
become significant. Only those with amplituded much larger
than the capillary lengtha may lead to noncircular closures
It is worth noting that the observed growth of the aspect ra
is not related to a true instability of the contour because
absolute amplitudeDr of all the deformation modes, includ
ing thek52 mode, decreases in time.

These conclusions are further strengthened by the lin
stability analysis of the level sets of the known axially sym
metric self-similar focusing solutions to Eq.~1! ~Graveleau
solutions!. These solutions describe, to leading order,
collapse of a circular interface@5,6#. In order to study focus-
ing solutions to Eq.~1!, it is convenient to introduce a new
dependent variable

v5
h3

3

so that Eq.~1! becomes

]v
]t

53v¹2v1u¹vu2. ~4!

If we normalize the focusing time to betc50 (t,0),
then the Graveleau solutions form a one-parameter famil
self-similar solutions given by

gb~x,t!52
uxu2

t
w~bh!,

where h5t/uxua is the similarity variable and the simila
rity exponent a lies between 1 and 2~see Ref.@7#; a
51.312 . . . for theGraveleau solution!. The focusing occurs
sincew(0)50 and there is ag,0, such that

w~h!H .0 for g,h,0

50 for h<g.

Moreover,w8(0)521, so that

lim
t→0

gb~x,t!5buxu22a.

In the self-similar variables,

y5x~2t!21/a, t52 ln~2t !,

Eq. ~4! becomes
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]V

]t
53VDV2

v

a
•“V1u¹Vu21S 2

a
21DV, ~5!

where V(y,t)5(2t)122/av(x,t). The Graveleau solution
are given by

gb~x,t!5~2t!2/a21cb~r!,

with r5uyu and cb(r)5r2w(2br2a). Note thatcb(r) is
an axisymmetric steady-state solution to Eq.~5!.

Let V(y,t) be a solution to Eq.~5!. We introduce polar
coordinates ~r,u! in the y plane, and write V(y,t)
5W(r,u,t). Since we are interested in the stability of c
cular fronts, it is useful to work with the equation for th
evolution of the level curves derived from Eq.~5!. Specifi-
cally, we invert p5W(r,u,t) to obtain r5S(p,u,t) and
derive the equation forS. We refrain from writing down this
very complicated nonlinear partial differential equatio
since we are only interested in its linearization about
level curves for the Graveleau solution. LetC(p) denote the
inverse of the Graveleau solutionc1(r) so that

c1„C~p!…5p,

and retain only the linear terms in the equation for

z~p,u,t!5S~p,u,t!2C~p!.

Finally, if we set

z~p,u,t!5A~p!exp~dt1 iku!,

we obtain the equation

3pC2A91F S 2

a
CC821DC226pCC8

23pS 2

a
21D ~CC8!2GA8

1F3p~12k2!1S 1

a
2d DC2GC82A50. ~6!

Equation~6! has a regular singular point atp50 and pos-
sesses a unique smooth solution satisfying

A~0!51. ~7!
,
e

For p@1, Eq.~6! has a solution with algebraic growth and
solution with superexponential growth. For each wave nu
ber k the eigenvalued is selected so that the solution of E
~6! satisfying Eq.~7! has algebraic growth at infinity. In gen
eral, we cannot findd analytically and so we must resort to
numerical shooting technique to determine it~for details, see
Ref. @18#!.

It is clear that the Graveleau level curves are unstable
perturbations with wave numbersk50 and 1 which corre-
spond to perturbing the location of the focusing point and
radius of the initial circle. Our numerical and theoretic
studies show that the Graveleau level curves are unst
with respect to perturbations with wave numberk52, and
stable fork.2. These results are consistent with the expe
ments and simulations described above.

IV. FINAL REMARKS

The present results show that nonaxially symmetric c
verging flows differ from the well known symmetric case
many nontrivial ways. The full understanding of this comp
cated problem requires theoretical developments clearly
yond the scope of the present work. However, it is alrea
apparent that no simple generalizations based on the circ
case can be made. Very near the collapse, the shape o
contour for elongated dams always resembles a narrow o
thus suggesting an asymptotic behavior largely independ
of the initial conditions. However, this behavior is not se
similar since different power laws hold forr min and r max.
Indeed, both of these radii tend to zero ast→tc although the
aspect ratioA→`.

A natural extension of the present work is to study t
behavior of Eq.~1! with a nonlinearity exponent differen
from m53, since these other equations appear in many s
ations of considerable practical interest@9,19,20#, for in-
stance flow in porous media (m.1). However, these situa
tions are not amenable to simple experimental study,
have not been considered here.
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@17# S. Betelú~unpublished!.
@18# S. B. Angenent and D. G. Aronson~unpublished!.
@19# R. C. Kerr and J. R. Lister, Earth Planet. Sci. Lett.85, 241

~1987!.
@20# J. E. Simpson, Annu. Rev. Fluid Mech.14, 341 ~1982!.


