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Noncircular converging flows in viscous gravity currents

J. A. Diez, L. P. Thomas, S. BefelR. Gratton, and B. Marino
Instituto de Fsica Arroyo Seco, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Pinto 399, 7000 Tandil, Argentina

J. Gratton
Instituto Nacional de fica de Plasmas, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Laboratorio de Fisica de Plasma,
Departamento de Bica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Pabellm |, Ciudad Universitaria, 1428 Buenos Aires, Argentina

D. G. Aronson
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

S. B. Angenent
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
(Received 1 April 1998

We study the filling of a dry regioricavity) within a viscous liquid layer on a horizontal plane. In our
experiments the cavities are created by removable dams of various shapes surrounded by a silicon oil, and we
measure the evolution of the cavity’s boundaries after removal of the dams. Experimental runs with circular,
equilateral triangular, and square dams result in circular collapse of the cavities. However, dams whose shapes
lack these discrete rotational symmetries, for example, ellipses, rectangles, or isosceles triangles, do not lead to
circular collapses. Instead, we find that near collapse the cavities have elongated oval shapes. The axes of these
ovals shrink according to different power laws, so that while the cavity collapses to a point, the aspect ratio is
increasing. The experimental setup is modeled within the lubrication approximation. As long as capillarity is
negligible, the evolution of the fluid height is governed by a nonlinear diffusion equation. Numerical simula-
tions of the experiments in this approximation show good agreement up to the time where the cavity is so small
that surface tension can no longer be ignored. Nevertheless, the noncircular shape of the collapsing cavity
cannot be due to surface tension which would tend to round the contours. These results are supplemented by
numerical simulations of the evolution of contours which are initially circles distorted by small sinusoidal
perturbations with wave numbeks=2. These nonlinear stability calculations show that the circle is unstable in
the presence of the modie=2 and stable in its absence. The same conclusion is obtained from the linearized
stability analysis of the front for the known self-similar solution for a circular cavity.

[S1063-651X98)04711-4

PACS numbds): 47.50+d

[. INTRODUCTION of the initial and far-field conditions. In addition, the cavity
contour should advance faster where the inward curvature is
This work concerns convergent viscous gravity currentslarger, sincévVh is larger there. Both guesses are experimen-
which occur when a viscous layer on a horizontal surfaceally confirmed here, but the results show that they do not
fills an initially dry region(cavity). As time progresses, the imply that the contour always tends asymptotically to a circle
fluid spreads into this region and at some titpéclosure or  or any self-similar form.
focusing time, the fluid fills the cavity. An important feature We approach the problem in several steps. First, we per-
of these currents is that the flow is primarily horizontal and isform experiments with a silicon oil on a glass surface and
governed by a balance between gravity and viscous forcegyeate the cavity by means of dams of various shapes. Sur-
inertia effects being negligible. This problem with radial prisingly, we find that some special shapes of the dams do
symmetry (circular cavity has received attention in recent not result in circular collapsing flowgsee below, but in
years[1-7]. It is known that for timet less than but close to collapsing contours shaped as elongated ovals. We also com-
t. and sufficiently small distancesfrom the center of sym- pare the measurements with the results of a numerical code
metry, the fluid heighh(r,t) is described by a self-similar which gives the time evolution of the flow, assuming that
function[5,6]. Self-similar behavior also occurs foet. in surface tension effectginevitably present in the experi-
the neighborhood of =0. mentg are negligible. The comparison shows that surface
Recently[8], it has been shown that there can be localtension affects the evolution of the contours mainly in the
self-similar behavior which is not axially symmetric in the regions where their inwards curvature becomes of the order
post-focusing stage. However, no description of the nonaxief the capillary lengtha. However, surface tension effects
ally symmetric closure process is known. Qualitatively, it cannot be responsible for the appearance of noncircular col-
seems reasonable to guess that near the closure the systiapsing flows since, on the contrary, the tendency of capillary
should behave in a simple general way, largely independeribrces is to round the contours.
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The experiments and numerical simulations suggest tha ! ' g ' g ' g ' g
circular contours are not attracting. Consequently, we per- : : : : :
form a series of numerical simulations to test the nonlinear
stability of circular contours. In particular, we simulated the
experimental setup, but now with dams of circular shape
perturbed by sinusoidal modes having various azimuthatg o[
mode number&. The main result is that the collapsing con- £
tours become elongated only when the mkee? is present. >
Finally, we investigate the linear stability of the level sets of
the known axially symmetric self-similar focusing solution, 5
the so-called Graveleau solutidi]. These solutions de- 5 E E E E
scribe to leading order the collapse of a circular cajsg]. L : : : ‘ : : : :
Our analysis shows that the circular interfaces of the Grav-
eleau solutions are unstable to perturbations with wave num x(cm)
bersk<2, and stable to perturbations with wave numbers FIG. 1. Temporal sequence of experimental contour shapes for

k=3. Thus, in particular at the level of linear analysis, elon-,, elliptical dan{r ;,,(0)=10 cm, r ;(0)=5 cmj att=29.5, 104.3,

gation (k=2) induces instability. This is in agreement with 157 9" 1716, 176.5, and 182 s. The height of the fluid layéris
the experimental observation, the numerical simulations, and.o 52 cm and the closure occurstat182.3 s.

the numerical nonlinear perturbation analysis cited above.
from experiments and simulations.

Before discussing the results with the other dam shapes, it
is convenient to consider the mathematical modeling of the
In the experiments the flow is produced in a flat glass trayflow. It is well known [2,9,1Q that when the free surface
(72X 94x 10 cn?). The horizontality of the bottom plate is slopes are small, the lubrication approximation holds and
optically controlled up to 0.01 cm. A layetthicknesshg consequently a nonlinear diffusion equation of the fdfr

=0.5 cm of polydimethylsiloxangPDMS, v=101.6 cni/s,

p=0.973 g/cm, y=21dyn/cm atT=20 °C) initially sur- oh  pg

rounds a central dry regiofthe cavity bounded by a dam 3. V.- (h3®Vh) @
which is raised at=0. A video camera records from below ®

the evolution of the dry region contour and data are obtainegescribes the height profite(x,y,t), wherep is the viscos-
by digitalizing a set of selected framéke resolution attain- ity, p the density, and) the gravity. The effects of surface

able with the maximum zoom is about 0.01)cm _ tension have not been included, because they do not appre-
We employ dams shaped as circles, squares, equilateral

triangles, and the figures that result from the elongation of
these regular contours along a symmetry axis, i.e., ellipses
rectangles and rhombs, and isosceles triangles. The area «
the initial dry region(=100 cnf) is a small fraction of the
total tray area. Experiments with elongated dams were re-
peated for different orientations of the major axis with re-
spect to the tray walls. These changes never produced apprt
ciable effects. The experimental results are well
reproducible; the main sources of dispersion are the pixel ¢
size and, in the initial stage, the formation of bubbles and="
other perturbations associated with the removal of the dam. % Wk
The experiments with circular dams confirm with im- -
proved accuracy the results reported in R&f. Therefore, in [ .
this short overview we pass directly to experiments with el-
liptical dams. In Fig. 1, we show a temporal sequence of
contours for a case with initial radii;(0)=10 cm and
rmin(0)=5 cm. A noteworthy point is that the contours are
close but not equal to ellipses. In Fig. 2, we plgf,(t) and
rmin(t) (the lines correspond to numerical simulations; see 102 A L
below). It is seen that the cavity becomes more and more 10" 10°
elongatedi.e., the aspect ratid\(t) =r na /I min iINCreases as t -t
the size decreasgsantil finally it resembles a rapidly short- ©
ening narrow ovalthe width falls below the resolution while FIG. 2. Major s and minor ¢, radius of the collapsing
the length is still of the order of a millimeterNote that this  cavity of Fig. 1 as a function df,—t. The radii and the time are in
occurs despite the fact that the contour velocity is larger inunits of r,;,(0) and ty=3ur n(0)/pghe (=54.4 3, respectively.
the regions of larger curvatures as expeci@@ar the The symbols represent the experimental data and the lines corre-
apexes This is also shown by the curve corresponding tospond to the numerical simulatiofig3] with different values of
this case in Fig. 3, where we repd&t (t) =r nax—min DOth  AXin=AYmin @lso in units ofr ;,,(0).

Il. EXPERIMENTS AND NUMERICAL SIMULATIONS

10° |

Experiments
Numerics
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FIG. 3. Absolute departure from circulantyr = pa—rmin as a FIG. 4. Relative amplitudé as a function of ,—t in units oft,

function oft,—t in units of r 4,;(0) atho, respectively, as i_n Fig. (see caption of Fig.)2 The symbols represent the experimental data
2. The symbols represent the experimental data and the lines corrgn the lines correspond to the numerical simulaft].

spond to the numerical simulatid@3].

ture R at the apexes is of the order of the capillary length

ciably affect the global flow dynamics provided the size of|n fact, by assuming an elliptical contour, we may estimate
the region is much larger than the capillary length R=r2 /r ... R is close to 0.15 cm for,,~3 cm and
=\¥/pg=0.15 cm(see, for instance, Ref12]). rmin=0.75 cm, the range where the departure becomes ap-

In addition, we have developed a numerical code to solvepreciable. Physically, we expect that surface tension tends to
Eg. (1) in Cartesian coordinates inside a rectangular domaismooth the curvature distribution, thus keeping the aspect
[13]. It is implemented in finite differences and employs theratio below the numerical values and preventing its un-
alternating-direction implicit methotsee, for example, Ref. bounded increase near the collapse.
[14]). The code uses a nonuniform grid and was validated by The experiments with squares and equilateral triangles
comparison with both the circular divergifd5,16 (drop  lead to circular closures which in the last stage do not differ
spreading and circular convergingl,4,7] (filling of a cav-  from those originating from circular dams. The disparity be-
ity) solutions. Some special diverging noncircular solutionsween the experimental and numerical values gf(t) and
[17] were also accurately calculated. To achieve a high resa- . (t) are much less than in the above elliptical case. This is
lution of the contour near the closure, the simulations wergeasonable since the curvature tends to a uniform distribution
carried out in a grid of 208200 points with the smallest regardless of capillary effects. Instead, rhombic and rectan-
cells located at the cent@AXmin=Aymi,=0.002 in units of gular dams, as well as dams shaped as isosceles triangles,
rmin(0)]. The calculations were performed on a workstationlead to noncircular closures, reminiscent of those originating
(Silicon Graphics Indyand each run took about two hours. from elliptical dams. Therefore, we center our interest on the
For a particular casénitial elliptic contour of aspect ratio time evolution of Ar(t)=r s Fmin- In Fig. 3, we report
2), we performed a more accurate simulati®81x 551 grid  Ar(t) for a square dantside 10 cm, an equilateral triangle
pointg which took about 15 days. dam(side 12 cm, a rectangular dam (2010 cn?), and the

Figure 2 shows a good agreement between the experimestliptical dam of Fig. 2. In the rectangular and elliptical
tal and numerical values of,,, and its asymptotic evolution cases, the decrease®f(t) is far slower than in the cases of
is closely approximated by a power law with an exponentregular shapes. This difference has the significant conse-
very close to unity. The behavior of,,, suggests a power- quence shown in Fig. 4. The relative departure from circu-
law dependence with an exponent considerably lower thafarity, defined as
unity (=0.5. An accurate determination of that exponent
would require a much more extensive numerical simulation,
mainly because the curvature radius at the apexes becomes Ar I mas— T min
very small near the closure, thus reducing the precision of b= P m
the numerical simulation there. The results with three differ- av. b maxtmin
ent grids are shown in Fig. 2. Note that there is a strong and
progressive departure between experimental and numericdkecreases for the dams of regular shapes and increases for
values ofr .. This is interpretable as an effect of surfacethe dams with elongated shapes.
tension, which becomes important when the radius of curva- In summary, the results strongly indicate that an elon-
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to circles. For much smallef (<0.01) andk=2, the aspect
ratio A(t) remains almost constant and equal A¢(0)=1
during most of the collapse, as should be expected because
the amplitude of the distortion actually decreases. Only very
near the closurer(,~ §) doesA(t) increase rapidly and un-
boundedly. In the experiments with initial regular contours,
some smalk=2 distortions cannot be ruled out as a conse-
quence of the removal of the dam; nevertheless, we obtain
circular closures. This is because small distortions are over-
come by capillarity before their effects on the aspect ratio
become significant. Only those with amplitudenuch larger
than the capillary lengtl may lead to noncircular closures.

It is worth noting that the observed growth of the aspect ratio
is not related to a true instability of the contour because the
absolute amplituddr of all the deformation modes, includ-
ing thek=2 mode, decreases in time.

These conclusions are further strengthened by the linear
stability analysis of the level sets of the known axially sym-
0'9 ' 10 metric self-similar focusing solutions to E(l) (Graveleau

' ' solutiong. These solutions describe, to leading order, the
collapse of a circular interfadé®,6]. In order to study focus-
ing solutions to Eq(1), it is convenient to introduce a new
dependent variable

10 T
0.3 0.4

T T T T
0.5 0.6 0.7 0.8

rav = (rmax + r'min ) / 2

FIG. 5. Relative amplituded as a function ofr,, in units of
r min(0) for small perturbations of a circle with different modes
=2, 3,4, and 5.

gated contour does not evolve to a circular shape. Specifi- 3
cally, bothr ., andr . tend to zero simultaneously &t
=t, following different power laws on—t.. Consequently,
the departure from circularityp increases as the cavity
closes. The results cannot be attributed either to experimental v

or to numerical effects not contained in the lubrication ap- E=30V2v+|Vv|2.
proximation on the basis of Eql). Regarding the experi-

mental results, the effects of surface tension are the critical It lize the f ing i i —0 (t<0
issue, since the front positions are determined with high ac; we normalize the focusing time 1o be; ( )'.
curacy(<0.1 mm and the effects related to lacks of planar- then t_he_ Gravele_au SOI.Ut'OnS form a one-parameter family of
ity or horizontality of the tray have been shown to be neg”_self—smllar solutions given by

gible. However, surface tension cannot be responsible for the
increase ofb, since, on the contrary, it tends to redubeln

fact, Fig. 4 shows that the experimental data are a little be-
low the numerics for the ellipse and the rectangle. The reli-
ability of the numerics is shown in Fig. 2 since the results foryhere n=t/|x|* is the similarity variable and the simila-
three different grid sizes are practically coincident. As a conyity exponent« lies between 1 and Zsee Ref.[7]; a

sequence, the behavior of the noncircular collapses is welL'1 312 for theGraveleau solution The focusing occurs
determined by the experiments and the numerics. Perhaps thgce (0)=0 and there is ay<0, such that

most significant uncertainty regards the value of the expo-
nent for the time dependence of,,,, which certainly is
much less than unity and appears to be close to 0.5.

so that Eq(1) becomes

4

|x|2
Op(X,t)=— e ¢(bn),

>0

for y< <0
e(n) _

0 for np=<y.

lll. STABILITY OF PERTURBED CIRCULAR CONTOURS Moreover, o’ (0)=—1, so that

In order to provide an interpretative scheme to these re-
sults, we perform numerical simulations starting with a dis-

i — 2—a
torted circular contour given by lim gp(x,t)=b|x|*" .

t—0

r=1+6cogkd), 6=0.1, k=2,34,5 (3) In the self-similar variables,

with r and @ the polar coordinates. As shown in Fig. &, y=x(—t) Y%, r=—In(-1),
increases for ,,—0 only for k=2, so that only in this case

does the contour tend to elongated ovals, otherwise it tendsq. (4) becomes
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Vv v 2
—=3VAV—— -Vv+|vv|2+(——1)v, (5)
aT a o

where V(y,7)=(—t)1"?*v(x,t). The Graveleau solutions
are given by

(X, = (=) Ly(p),

with p=y| and ¢s(p) =p?e(—bp~ ). Note thatyn(p) is
an axisymmetric steady-state solution to Es).

Let V(y,7) be a solution to Eq(5). We introduce polar
coordinates (p,6) in the y plane, and write V(y,7)

=W(p,0,7). Since we are interested in the stability of cir-
cular fronts, it is useful to work with the equation for the

evolution of the level curves derived from E¢). Specifi-
cally, we invertp=W(p,#,7) to obtain p=5(p,0,7) and
derive the equation foB We refrain from writing down this

very complicated nonlinear partial differential equation,
since we are only interested in its linearization about the

level curves for the Graveleau solution. E{p) denote the
inverse of the Graveleau solutiaf (p) so that

1 (¥(p))=p,

and retain only the linear terms in the equation for

{(p,0,7)=S(p,0,7)—¥(p).

Finally, if we set

{(p, 0, 7)=A(p)exp(dT+ik8),

we obtain the equation

3pWAA"+

2

- ‘lf\lf’—l)\IfZ—Gp\I'\I”
2

—3p(;— 1)(«1@')2%’

+

(6)

1
3p(1-k?)+ - 5)\?2}W'ZA=0.

Equation(6) has a regular singular point at=0 and pos-
sesses a unigue smooth solution satisfying

A(0)=1. 7)
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For p>1, Eq.(6) has a solution with algebraic growth and a
solution with superexponential growth. For each wave num-
berk the eigenvalueS is selected so that the solution of Eq.
(6) satisfying Eq.(7) has algebraic growth at infinity. In gen-
eral, we cannot find analytically and so we must resort to a
numerical shooting technique to determinéfdr details, see
Ref.[18]).

It is clear that the Graveleau level curves are unstable to
perturbations with wave numbeks=0 and 1 which corre-
spond to perturbing the location of the focusing point and the
radius of the initial circle. Our numerical and theoretical
studies show that the Graveleau level curves are unstable
with respect to perturbations with wave number 2, and
stable fork>2. These results are consistent with the experi-
ments and simulations described above.

IV. FINAL REMARKS

The present results show that nonaxially symmetric con-
verging flows differ from the well known symmetric case in
many nontrivial ways. The full understanding of this compli-
cated problem requires theoretical developments clearly be-
yond the scope of the present work. However, it is already
apparent that no simple generalizations based on the circular
case can be made. Very near the collapse, the shape of the
contour for elongated dams always resembles a narrow oval,
thus suggesting an asymptotic behavior largely independent
of the initial conditions. However, this behavior is not self-
similar since different power laws hold far,, and r .
Indeed, both of these radii tend to zerotast, although the
aspect raticA— o,

A natural extension of the present work is to study the
behavior of Eq.(1) with a nonlinearity exponent different
from m= 3, since these other equations appear in many situ-
ations of considerable practical interd€,19,24, for in-
stance flow in porous median>1). However, these situa-
tions are not amenable to simple experimental study, and
have not been considered here.
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